STABILITY OF A LINEAR SYSTEM WITH RANDOM DISTURBANCES OF ITS PARAMETERS

 vomushoheniland ee paranithov)

PMM Vol.30, M 2, 1966, pp.404-409

M,B, NESELSON and R.Z.KHAS'MINSKII
(Moscow)

(Received August 23, 1965)

The stability problem of a system described by an nth order equation with random coefficients is examined. Necessary and surficient conditions of asymptotic stability in the mean-square are obtained. In the absence of noise these conditions transform into conditions of Routh and Hurwitz. Such sufficient conditions of moments of higher order ere presented.

1. We assume that a certain determinate system is described by a lincar differential equation of the order n with constant coefficients

$$
\begin{equation*}
y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n} y=0 \tag{1.1}
\end{equation*}
$$

When random forces of the type of "white nolse" aot on such a system, Equation (1.1) transforms into the following stochastic differential equation

$$
\begin{equation*}
y^{(n)}+\left[a_{1}+\eta_{1}(t)\right] y^{(n-1)}+\ldots+\left[a_{n .}+\eta_{n}^{\prime}(t)\right] y=0 \tag{1.2}
\end{equation*}
$$

It is assumed tnat Gausisian "white noises" $\xi_{i}^{\prime}(t), \ldots, \xi_{i}(t)$ have zero mathematical expectation but can, generally speaicing, be correlated so that

$$
M \eta_{i}{ }^{\prime}(t) \eta_{j}^{\prime}(s)=2 a_{i j} \delta(t-s)
$$

It is known that we can pass from noises $\eta_{i}(t), \ldots, \eta_{i}(t)$ to independent "white noises" $\xi_{i}(t), \ldots, g_{;}(t)$ with zero mathematical expectation and correlation matrix $20_{1} ;(t-s)$ by means of Equations

$$
\begin{equation*}
\eta_{i}^{\prime}(t)=\sum_{j=1}^{n} \alpha_{i j} \xi_{j}(t) \tag{1.3}
\end{equation*}
$$

where the matrix $\left\|\alpha_{i j}\right\|$ is such that

$$
\left\|\alpha_{i j}\right\|\left\|\alpha_{j i}\right\|=\left\|a_{i j}\right\|^{\top} \|
$$

In the following, Equation (1.2) is considered as aystem of stochastic differential equations of Itô (see, for example, [1], p.247) which tacing into account (1.3) and introducing the notation

$$
y=X_{1}, y^{\prime}=X_{2}, \ldots, y^{n-1}=X_{n}
$$

can be written in the form

$$
d X_{1}=X_{2} d t, \quad d X_{2}=X_{3} d t, \ldots, d X_{n-1}=X_{n} d t
$$

$$
\begin{equation*}
d X_{n}=-\sum_{i=1}^{n} a_{i} X_{n-i+1} d t-\sum_{i, j=1}^{n} a_{i j} X_{n-i+1,} d \xi_{j}(t) \tag{1.4}
\end{equation*}
$$

It is known that only one strictly Markov process exists with continuous trajectories $X^{x}(t)=\left(X_{1}^{x}(t), \ldots, X_{n}^{x}(t)\right)$, which satisfy system (1.4) at the initial condition $X^{x}(0)=x$.

The process $X^{x}(t)$ is closely connected to the differential operator of second order

$$
L=\sum_{i=1}^{n-1} x_{i+1} \frac{\partial}{\partial x_{i}}-\sum_{i=1}^{n} a_{i} x_{n-i+1} \frac{\partial}{\partial x_{n}}+\left(\sum_{i, j=1}^{n} a_{i j} x_{n-i+1} x_{n-j+1}\right) \frac{\partial^{2}}{\partial x_{n}^{2}}
$$

which in the investigation of stability of Markov processes plays the same role as the Liapunov operator in the stability of determinate systems (see [2 and 3]).

Following [2, 4 and 5] we say that system (1.4) is asymptotically $p-$ stable $(p>0)$, if $\lim N\left|X^{2}(t)\right| D=0$ for $t \rightarrow \infty$ and in addition to this for any $\in>0$ such a $\delta>0$ is found that $M\left|X^{*}(t)\right|<\varepsilon$, if $|x|<\delta$ (here $|x|$ denotes the Euclidean norm of vector x. System (1.4) is called asymptotically stable in the mean-square if it is stable at $p=2$.

A method for obtaining necessary and sufficient conditions of stability in the mean-square of an arbitrary linear system with "white noises" is indicated in the interesting paper [4], where a concept different from the one adopted in this paper for a linear stochastic system is examined. However, conditions obtained by this method are fairly cumbersome; for their verification it is necessary to compute n^{2} determinants, the highest of which has the order n^{2}.

It is proven in [5] that for asymptotic stability in the mean-square of a stationary linear stochastic system it is necessary and sufficient that for any positive definite quadratic form $W(x)$ another positive definite quadratic form $V(x)$ be found for which $I V(x)=-W(x)$. This theorem permits to obtain (as was also noted in [2]) algebraic criteria of asymptotic stability in the mean-square for such a system. However, these criteria lead to even more cumbersome computations even in the determinate case.

In this paper necessary and sufficient conditions of stability in the mean-square are obtained for system (1.2) or (1.4). These conditions require computation of only $n+1$ determinants the highest of which has the order n (see (2.6) to (2.8)). In this connection it turns out that the first n determinants are the same as determinants $\Delta_{k}(k=1,2, \ldots, n)$ which enter into the criterion of Routh-Hurwitz for Equation (1.1). The last determinant, nowever, is obtained by exchanging the first row in Δ_{s} by a row which is composed according to a definite rule from coefficients a of the correlation matrix. If all $a_{1 j}=0$ then criterion (2.6) to (2.8) transforms into criterion of Routh-Hurwitz.

It is also interesting to note that in the special case when all a_{11} are equal to zero with the exception of a single one, it follows from the criterion obtained that the neoessary and sufficient condition presented for this case in [6] can be significantly simplified. For $n=2, a_{11}=a_{12}=a_{21}=0$ this result coincides with the result of [7].
2. It was shown in [5] that for asymptotic stability in the mean-square of system (1.4) it is necessary that the system "without randomness"

$$
\begin{equation*}
d X_{1}=X_{2} d t, \quad d X_{2}=X_{3} d t, \ldots, \quad d X_{n-1}=X_{n} d t_{n} \quad d X_{n}=-\sum_{i=1}^{n} a_{i} X_{n-i+1} \tag{2.1}
\end{equation*}
$$

be asymptotically stable, i.e. that conditions of Routh-Hurwitz be fulfilled

$$
\left|\begin{array}{cccccc}
a_{1} & a_{3} & a_{5} & . & .0 \\
1 & a_{2} & a_{4} & . & . & .0 \\
0 & a_{1} & a_{3} & . & . & .0 \\
0 & 1 & a_{2} & . & . & 0 \\
. & . & . & . & . & . \\
0 & 0 & 0 & . & . & .
\end{array}\right|>0
$$

It is known that when these conditions are fulfilled, there exists a positive definite quadratic form $V(x)$ for which by virtue of (2,1) the total
derivative

$$
\begin{equation*}
L_{0} V=\sum_{i=1}^{n-1} x_{i+1} \frac{\partial V}{\partial x_{i}}-\sum_{i=1}^{n} a_{i} x_{n-i+1} \frac{\partial V}{\partial x_{n}} \tag{2.2}
\end{equation*}
$$

represents a preassigned negative definite form.
We assume initially that the quadratic form

$$
a(x)=\sum_{i, j=1}^{n} a_{i j} x_{n-i+1} x_{n-j+1} \quad\left(a_{i j}=a_{j i}\right)
$$

is positive definite. Then the following is valid.
Lemma 2.1. For asymptotic stability in the mean-square of system (1.4) it is necessary and sufficient for a positive definite quadratic form

$$
V(x)=\sum_{i, j=1}^{n} d_{i j} x_{i} x_{j}
$$

to exist and satisfy the conditions

$$
\begin{equation*}
L_{0} V(x)=-a(x), \quad d_{n n}<1 / 2 \tag{2.3}
\end{equation*}
$$

Proof. In fact, let the quadratic form $V(x)$ exist with coefficients d_{1}; and satisfy the conditions of the Lemma, By virtue of (1.5), (2.2) and (2.3)

$$
L V=L_{0} V+a(x) \frac{\partial^{2} V}{\partial x_{n}^{2}}=\left(2 d_{n n}-1\right) a(x)<0
$$

According to the already previously mentioned theorem or [5] it follows from this that system (1.4) is asymptotically stable in the mean-square.

On the other hand in case of asymptotic stability of system (1.4) according to the same theorem, there exists a positive definite quadratic form

$$
V_{1}(x)=\sum_{i, j=1}^{n} e_{i j} x_{i} x_{j}
$$

for which $L V_{1}(x)=-a(x)$, i.e.

$$
L_{0} V_{1}=L V-a(x) \frac{\partial^{2} V}{\partial x_{n}^{2}}=-\left(2 e_{n n}+1\right) a(x)
$$

In this manner $V=V_{1}(x) /\left(2 e_{n n}+1\right)$ and consequently

$$
d_{n n}=e_{n n} /\left(2 e_{n n}+1\right)<1 / 2
$$

Lemma is proved.
For obtaining the desired conditions it is sufficient to express the coefficient d in the form $V(x)$ which is to be determined from Equation (2.3) through parameters a_{1} and a_{1}, of system (1.4).

For this purpose we denote by $X_{1 j}^{\alpha}(t), \ldots, X_{n j}^{a}(t)(j=1,2, \ldots, n)$ the fundamental system of solutions of determinate equations (2.1). This system is defined throuph initial conditions $X_{s j}(0)=\delta_{\text {sji. Then any solution }} X^{\circ}(t) \ldots, X^{x}$ ($\left.t\right)$ of these equations with initial conditions $X^{\circ} x$ ${ }^{-}{ }^{\circ} x_{i}(t) \ldots, X_{n}^{x}(i)$ of these equationis with initial conditions $X_{i} x(0)=$

$$
X_{i}^{*} x(t) 〒 \sum_{j=1}^{n} x_{j} X_{i j}^{*}(t)
$$

It is known [8] that function $v(x)$ which satisfles relationsh1p $(2,3)$ can be represented in the form

$$
V(x)=\int_{0}^{\infty} \sum_{i, j=1}^{n} a_{i j} X_{n-i, 1}^{{ }^{0} x}(u) X_{n-j+1}^{{ }^{0} x}(u) d u
$$

The last equation permits to express coefficients d_{14} of form $V(x)$ and In particular coefricient d_{n} through the fundamental system of solutions $X_{i}^{\circ}(t)$, and subsequentiy, as was shown in [9], through coefricients a_{i} and $a_{i j}$. In fact it follows from [9] that

$$
\begin{equation*}
d_{m n}=\frac{1}{2 J_{n}^{-}} \sum_{r=1)}^{n-1} q_{n, n}^{(r)} \Delta_{1, r, 1} \tag{2.1}
\end{equation*}
$$

Where $\Delta_{2} \cdot r_{11}$ is the cofactor of the slement of the first row and $r+1$ column of the last determinant of Hur ittz Δ_{1}, while quantities $\mu_{1,1}^{(r i}$ are related to coefficients a_{1}, of form $a(x)$ by Equation

$$
\begin{equation*}
(-1)^{n-1} \sum_{i, j=1}^{n} n_{n i, i, \ldots, 1} l_{n i}(\lambda) D_{n j}(-\lambda)=\sum_{r=0}^{n-1} q_{n n}^{(r)} \lambda^{(n r-1)} \tag{2.5}
\end{equation*}
$$

Here $D_{1}(\lambda)$ is the cofactor of the element of the nth row and f th column of determinant $D(\lambda)$ of system (1.4)

$$
D(\lambda)=\left|\begin{array}{ccccc}
-\lambda & 1 & 0 & \cdots & 0 \\
0 & -\lambda & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{n}-a_{n-1}-a_{n-2} & \cdots & a_{1}-\lambda
\end{array}\right|
$$

It is easy to see that $D_{n i}(\lambda) D_{n j}(-\lambda)=(-1)^{i+j-1} \lambda^{j-2}$. Therefore we obtain from (2.5)
$\sum_{k=0}^{n-1}\left(\sum_{p+q=2(n-k) .}(-1)^{q \cdot 1} a_{p q}\right) \lambda^{2 k}=\sum_{k=0}^{n-1} q_{n n}^{(n-k-1)} \lambda^{2 k}, \quad q_{n n}^{(n-k-1)}=\sum_{p+q \rightarrow 2(n-k)}(-1)^{q+1} a_{p_{q}}$
From Lemma 2.1, (2.4) and (2.6) it follows that in the case where $a(x)$ represents a positive definite quadratic form it is necessary and sufficient for stability in the mean-square of system (1.4) that the following cond1tions be fulfilled

$$
\begin{equation*}
\Delta_{1}>0, \ldots, \Delta_{n}>0, \Delta_{n}>\Delta \tag{2.7}
\end{equation*}
$$

Here

$$
\Delta=\left|\begin{array}{ccccc}
q_{n n}^{(0)} & \dot{q}_{n n}^{(1)} & q_{n n}^{(2)} & \cdots & q_{n n}^{(n-1)} \tag{2,8}\\
1 & a_{2} & a_{4} & \ldots & 0 \\
0 & a_{1} & a_{3} & \ldots & 0 \\
\cdots & \cdots & \ldots & \ldots & 0 \\
0 & 0 & 0 & \cdots & \cdots \\
a_{n}
\end{array}\right|
$$

differs from the last determinant of Hurwitz Δ_{n} only in the first row. In this connection quantities $q^{(r)}(r=0,1, \ldots, n-1)$ are expressed through coefficients a_{1}; of the correlation matrix according to Equations (2.6).

It will be shown now that conditions (2.6) to (2.8) remain in force even without the assumption regarding the positive definite character of the quadratic form $a(x)$. For this purpose another system, together with (1.4), will be examined

$$
\begin{gather*}
d X_{1}=X_{2} d t, \quad d X_{2}=X_{3} d t, \ldots, d X_{n-1}=X_{n} d t \tag{2.9}\\
d X_{n}=-\sum_{i=1}^{n} a_{i} X_{n-i+1} d t-\sum_{i, j=1}^{n} a_{i j} X_{n-i+1} d \xi_{j}+\varepsilon X_{1} d \eta_{1}+\varepsilon^{2} \sum_{i=2}^{n} X_{i} d \eta_{i}
\end{gather*}
$$

Here $\eta_{1}(t), \ldots, \eta_{A}(t)$ are Wiener processes independent of each other and or $5_{1}(t), \ldots, s_{n}(t) ; \varepsilon$ is a small parameter.

It is easy to see that the operator which corresponds to system (2.9) has the form

$$
L_{\varepsilon}=L+\left(\varepsilon^{2} x_{1}^{2}+\sum_{i=2}^{n} \mathrm{e}^{4} x_{i}{ }^{2}\right) \frac{\partial^{2}}{\partial x_{n}{ }^{2}}
$$

Since the quadratic form

$$
a_{\equiv}(i)=a(x)+\varepsilon^{2} x_{2}^{2}+\varepsilon^{4} \sum_{i=2}^{n} x_{i}^{2}
$$

1s positive derinite for any $\varepsilon>0$, it is necessary and sufficient for asymptotic stability in the mean-square of system (2.9) that the following conditions be satisfled

Here

$$
\Delta_{1}>0, \ldots, \Delta_{n}>0, \quad \Delta_{n}>\Delta
$$

$$
\Delta_{\varepsilon}=\left|\begin{array}{ccccc}
q_{n n}^{(0)}+\varepsilon^{4} & q_{n n}^{(1)}-\varepsilon^{1} & q_{n n}^{(2)}+\varepsilon^{3} & \ldots & (-1)^{n-1}\left(a_{n n}+\varepsilon^{2}\right) \\
1 & a_{2} & a_{4} & \cdots & 0 \tag{2.10}\\
0 & a_{1} & a_{3} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & \cdots \\
=\Delta+(-1)^{n-1} \varepsilon^{2} \Delta_{1 n}+\varepsilon^{4} \sum_{i=1}^{n-1}(-1)^{i-1} \Delta_{1 i}
\end{array}\right|=
$$

Since for $(-1)^{n-1} \Delta_{1 n}>0$, it follows from (2.10) that for all surficiently small

$$
\begin{equation*}
\Delta_{\varepsilon}>\Delta \tag{11}
\end{equation*}
$$

Now we shall assume that system (1.4) is asymptotically stable in the mean-square. Then according to theorem 5.2 of [5], system (2.9) will also be stable for all sufficiently small $\varepsilon>0$ and therefore

$$
\begin{equation*}
\Delta_{1}>0, \ldots, \Delta_{n}>0, \quad \Delta_{n}>\Delta_{s} \tag{2.1른}
\end{equation*}
$$

From (2.11) and (2.12) we have

$$
\begin{equation*}
\Delta_{1}>0, \ldots, \Delta_{n}>0, \quad \Delta_{n}>\Delta \tag{2.13}
\end{equation*}
$$

Conversely, let inequalities (2.13) be satisfied. Then it follows from (2.10) that a sufficiently small ε can be found such that inequalities (2.12) are satisfied, i.e. system (2.9) is asymptotically stable in the mean-square for this ε. Consequently, (see [5], Theorem 5.1) system (1.4) is also asymptotically stable in the mean-square. Therefore the following theorem is valid.

Theorem 2.1. Por asymptotic stability in the mean-square of system (1.4) it is necessary and sufficient that the following conditions be fulfilled

$$
\begin{equation*}
\Delta_{1}>0, \ldots, \Delta_{n}>0, \quad \Delta_{n}>\Delta \tag{2.14}
\end{equation*}
$$

Here determinant Δ has the form (2.8), while quantities $q_{n n}^{(r)}(r=0,1,$. ficin-1) in the first row of this determinant are expressed through coefficients a_{i}, according to Equations (2.6).

It is noted inat only those coefficients a_{1}, of the correlation matrix enter into conditions (2.14) for which the gum $t+f$ is even. In particular, for systems of second and third order neces. ary nd sufficient conditions of asymptoilc atability in the mean-square ime the form for $n=3$.

$$
a_{1}>0, \quad a_{2}>0, \quad a_{1} a_{2}>a_{11} a_{2}+a_{22} \quad \text { or } \quad n=2
$$

$a_{1}>0, \quad a_{3}>0, \quad a_{1} a_{2}>a_{3}, \quad\left(a_{1} a_{2}-a_{3}\right) a_{3}>a_{11} a_{2} a_{3}+a_{33} a_{1}+a_{3}\left(a_{22}-2 a_{13}\right)$
In the case where independent white noises $\eta_{i}, \ldots, \eta_{i}$ are added to coefficients a_{y} of Equation (1.1), i.e. $a_{1 j}=0$ for $t \neq j$, the determinant Δ assumes the most simple form

$$
\Delta=\left|\begin{array}{ccccc}
a_{11} & -a_{22} & a_{33} & \ldots & (-1)^{n-1} a_{n n} \\
1 & a_{2} & a_{4} & \ldots & 0 \\
0 & a_{1} & a_{3} & \cdot & 0 \\
\cdots & \cdot & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & a_{n}
\end{array}\right|
$$

3. Conditions (2.6) to (2.8) obtained in Section 2, are sufficient for
 shall present sufficient conditions for asymptotic $p-s t a b i l i t y$ for $p>2$. It is assumed initialiy that the quadratic form $a(x)$ is positive definite.

For asymptotic p-stability at $p=2$, and therefore also at $p>2$, it is necessary for the following positive definite quadratic form to exist

$$
V(x)=\sum_{i, j=1}^{n} d_{i j} x_{i} x_{j} \quad\left(d_{i j}=d_{j i}\right)
$$

and to satisfy relationships (2.3). We set

$$
V^{\circ}(x)=[V(x)]^{1 / x p}
$$

It is not difficuit to see that

$$
\begin{align*}
L V^{\circ} & =p V^{1 / 2 p-2}\left\{\frac{V L_{0} V}{2}+a(x)\left[V d_{n n}+(p-2)\left(\sum_{j=1}^{n} d_{n j} x_{j}\right)^{2}\right]\right\}= \\
& =p V^{1 / 2 p-2} a(x)\left[V\left(d_{n n}-1 / 2\right)+(p-2)\left(\sum_{j=1}^{n} d_{n j} x_{j}\right)^{2}\right] \tag{3.1}
\end{align*}
$$

From the known inequality for the positive definite self-adjoint matrix [10]

$$
\left(D_{x, y}\right) \leqslant\left(D_{x, x}\right)\left(D_{\psi, y}\right)
$$

for $y=(0, \ldots, 0,1)$ it follows that

$$
\left(\sum_{j=1}^{n} d_{n j} x_{j}\right)^{2} \leqslant d_{n n} V(x)
$$

Making use of this relationship we obtain from (3.1)

$$
\begin{equation*}
L V^{\circ} \leqslant p V^{1 / 2 p-1} a(x)\left[d_{n n}(p-1)-1 / 2\right] \tag{3.2}
\end{equation*}
$$

If $d_{12}(p-1)<$ then it follows from Theorem 2.2 of paper [5] and (3.2) that system (1.4) is asymptotically p-atable.

In this manner for asymptotic stability of system (1.4) for $p>2$ it is sufficient that the following inequalities be satisfied. The first n of these inequalities are necessary

$$
\begin{equation*}
\Delta_{1}>0, \ldots, \Delta_{n}>0, \quad \Delta_{n}>(p-1) \Delta \tag{3.3}
\end{equation*}
$$

We can present examples which show that condition $\Delta_{n}>(p-1) \Delta$ is not necessary.

It is not difficult in a manner analogous to Section 2 to show that conditions (3.3) remain valid even without the assumption regarding nondegeneracy of the quadratic form $a(x)$

1. Doob, J.L., Stochast.1c Processes. J.Wiley and Sons, N.Y., 1953.
2. Kats, N.Ia. and Krasovski1, N.N., Ob ustoichivosti sistem so sluchainymi parametrami (On the stability of systems with random parameters). PNW Vol. 24, N 5, 1960.
3. Khas'minskil, R.Z., Ob ustoichivosti traektorii markovskikh protsessov (On the stability of the trajectory of Markov processes). PNM Vol. 26, 19 6, 1962 .
4. Leibowitz, M.A., Statistical Behavior of Linear Systems with Randomy Varying Parameters. J.math. Phys., Vol.4, N6, 1963.
5. Nevel'son, M.B. and Khas'minski1, R.Z., Ob ustoichivosti stokhasticheskikh sistem (On stability of stochastic systems). Problemy peredachi informatsii (Problems of transmission of information), in print.
6. Rabotnikov, Iu.L., 0 nevozmozhnosti stabilizatsil sistemy v srednem kvadratichnom sluchainym vozmushchenilami ee parametrov (On the impossibility of stabilizing a system in the mean-square by random perturbation of its papameters). PNW Vol.28, NE 5, 1964.
7. Caughey, T.K. and Dienes, J.K., The Behavior of Linear Systems with Random Parametric Excitation. J.math.Phys., Vol.41, Ne 4, 1962.
8. Malkin, I.G., 0 postroenil funktsi1 Liapunova dila sistemy lineinykh uravnenil (On the construction of Liapunov functions for a system of linear equations).. PNN Vol.16, NR 2, 1952.
9. Bedel'baev, A.K., Pro pobudovu funktsi1 Liapunova vigliadi kvadratichnoi form1 1kh zastosuvannia do stilkosti regul'ovanykh sistem. (Ukrainian) Avtomatika (Kilv), Ne 1, 1958.
10. Gel'fand, I.M., Lektsii po lineinoi algebre (Lectures on Linear Algebra), end edition M.-L., Gostekhizdat, 1951.
